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SIMMARY

A method has been developed for calculating flutter characteristics
of finite-span swept or unswept wings at subsonic and supersonic speeds.
The method is basically a Rayleigh type analysis and is illustrated with
uncoupled vibration modes although coupled modes can be used. The aero-
dynamic loadings are based on distributions of section lift-curve slope
and local aerodynamic center calculated from three-dimensional steady-
flow theory. These distributions are used In conjunction with the
"effective' angle-of-attack distribution resulting from each of the
assumed vibration modes in order to obtain values of section 1ift and
pitching moment. Circulation functions modified on the basis of loadings
for two-dimensional airfoils oscillating in a compressible flow are
employed to account for the effects of oscillatory motion on the magni-
tudes and phase angles of the 1ift and moment vectors.

Flutter characteristics have been calculated by this method for
12 wings of varying sweep angle, aspect ratio, taper ratio, and center-
of-gravity position at Mach numbers from O to as high as 1.75. Compari-
sons of the results with experimental flutter data indicate that this
method gives generally good flutter results for a broad range of wings.

INTRODUCTION

Much of the difficulty encountered in attempting to predict flutter
characteristics for finite-span swept and unswept wings at subsonic and
supersonic speeds results from inadequate representation of the distri-
butions of cscillating aerodynamic loads on such wings. For both sub-
sonic and supersonic speeds a number of methods exist for evaluating
three-dimensional oscillating loads (refs. 1 to 21, for example). These
methods involve varying degrees of rigor, but all are characterized by
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the relatively extensive amount of computation required. In all of these
procedures it 1s necessary to recalculate the loading with each change of
reduced frequency. This fact further increases the amount of computation
required because in flutter prediction the reduced frequency at flutter
1s not usually found directly. Because the calculations are complex and
lengthy and because many of the procedures have not been proved in gen-
eral application, the use of these methods in flutter prediction has been
limited.

A procedure commonly used in the solution of practical flutter prob-
lems involving finite wings is a modal-type analysis similar to that
employed by Barmby, Cunningham, and Garrick for swept wings (ref. 22)
and by Smilg and Wasserman for unswept wings (ref. 23). These methods,
as presented in references 22 and 23, employ two-dimensional incompres-
sible aserodynamic forces and moments and thus do not take into account
the aerodynamic effects of finite span and compressibility.

The present report presents an approximate method of flutter cal-
culation based on a simplified representation of the three-dimensional
aerodynamic loading which 1s shown to be applicable to a wide variety
of wing plan forms at both subsonic and supersonic speeds. The present
method is also based on a modal analysls, but the aerodynamic effects
of finite span, taper, and compressibility are accounted for by utilizing
modified aerodynamic loadings based on spanwise distributions of section
lift-curve slope and local aserodynamic center calculated from well-known
subsonic (ref. 24) or supersonic (refs. 25 and 26) three-dimensional
steady-flow theory for flat, rigid wings. The distributions of section
1lift and pitching moment on oscillating flexible wings are obtained by
employing these distributions of lift-curve slope and aerodynamic center
for flat rigild wings in conjunction with the "effective" angle-of-attack
distribution resulting from osclllation of the wing in each of the assumed
vibration modes. The effect of oscillatory motion on the magnitudes and
phase angles of the 1ift and moment vectors is represented approximately
by modifying the familiar circulation functions of Theodorsen by utilizing
serodynamic flutter coefficients glven by Jordan (ref. 27) for two-
dimensional airfoils oscillating in subsonle or supersonic flow. A
detailed description of the procedure for meking flutter calculations is

given in the appendixes.

By representing the oselllating aerodynamic loads in this manner
the necessity of recalculating the load distributions for each value of
reduced frequency is avoided, since only the modified circulation func-
tions vary with frequency, and these in turn are assumed not to vary
along the span. The bending and twisting deformation of individual wing
sections is taken into account only in terms of the "effective" angle of
attack and is assumed not to affect distributions of lift-curve slope
and aerodynamic center. This procedure is equivalent to neglecting the
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influence of deformation on the lift-producing capacity of a given wing
section.

Flutter characteristics have been calculated by the method developed
herein (using three vibration modes) for wings with sweep angles from o°
to 52.5°, aspect ratios from 2.4 to 7.4, taper ratios of 0.6 and 1.0, and
center-of-gravity positions between 34 percent chord and 59 percent chord.
The results are compared herein with experimental data obtained in the
Langley 26-inch transonic blowdown tunnel (refs. 28 to 31) and in the
Lengley 9- by 12-inch supersonic blowdown tunnel (ref. 32).

SYMBOLS
A aspect ratio of full wing including fuselage intercept
Ap aspect ratio of wing considering side of fuselage as a reflec-

tion plane (twice the panel aspect ratio)

a nondimensional distance from midchord to elastic axis measured
perpendicular to elastic axis, positive rearward, fraction
of semichord b

ac nondimensional distance from leading edge to local serodynamic
center (for steady flow) measured streamwise, fraction of

streamwise chord, Cma/cla

acp nondimensional distance from midchord to local aerodynamic
center (for steady flow) measured perpendicular to elastlc
axis, positive rearward, fraction of semichord b

b semichord of wing measured perpendicular to elastic axis

by semichord of wing measured perpendicular to elastic axis at
spanwise reference station 7 = 0.75

s span of wing panel considering side of fuselage as a reflec-
tion plane

B ratio of local semichord b to reference semichord by meas-

ured perpendicular to elastic axis, b/by

C complex circulation function, F + 1G

Cy local lift-curve slope for a streamwise section in steady flow
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local lift-curve slope for a section perpendicular to the
elastic axis 1n steady flow

derivative with respect to angle of attack of local pitching-
moment coefficient measured about the leading edge of a
streamwise sectilon

local lifting-pressure coefficient

circulation function which modifies in-phase load components

deflection function of wing in bending mode
deflection function of wing in torsion mode

circulation function which introduces out-of-phase load
components

structural damping coefficient for wing (Subscript a denotes
torsional mode; subscript h denotes bending mode.)

local vertical translational displacement of wing at elastic
axis

mass moment of inertia of unit length of wing about elastic
axis

-1

reduced frequency based on the spanwise reference station
(n = 0.75) and on velocity component normal to elastic axis,
bra/Vh

length of exposed wing panel measured along elastic axis

Mach number

oscillatory moment about elastic axis per unit length of wing,
positive leading edge up

mass of wing per unit length measured along elastic axis

oscillatory 1lift per unit length of wing along the elastic
axis, positive downward

downwash expression defined by equation (5b)
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Ta

nondimensional radius of gyration of wing about elastic axis,

V:[@/mb2

time

flutter speed, measured parallel to free stream (experimental
values or values calculated by the method of this report)

calculated reference flutter speed obtained by using Cla n= 25
3

and acp = - 1

2

free-stream velocity
streamwise coordinate measured from leading edge of wing root

nondimensional coordinate from midchord measured perpendicular
to elastic axis, positive rearward, fraction of semichord b

nondimensional distance from elastic axis to local center of
gravity measured perpendicular to elastic axls, positive
rearward, fraction of semichord b

distance along elastic axis measured from wing root, 17

angle of attack

VMQ-l for M>1;\[1-M2 for M <1

wing section mass-density ratio, npbz/m
sweep angle; positive for sweepback
taper ratio of full wing including fuselage intercept

taper ratio of exposed wing panel

nondimensional coordinate (eilther spanwise or along elastic
axis) measured from wing root, fraction of exposed panel
span s or fraction of wing length 1

local torsionsl displacement of wing measured about elastic
axis

air density
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local bending slope of elastic axis, 3h/dy'
local rate of change of twist, 36/dy'
circular frequency of vibration

clrcular frequency of first uncoupled torsional vibration mode
of wing measured about elastic axis

circular frequency of uncoupled bending vibration mode of wing
(subscripts 1 and 2 denote first and second bending modes)

nondimensional streamwlse coordinate measured from leading edge
of wing root, fraction of exposed panel span s

Subscripts:

c/h
ea

C

quantities assoclated with the wing quarter-chord
quantities associated with the wing elastic axis

circulation functions obtained from the oscillatory amerodynamic
coefficients given in reference 27 for two-dimensicnal com-
pressible flow

quantities associated with the wing leading edge

quantities assoclated with the Mach lines originating from wing
root or tip

quantities associated with wing sections normal to the elastic
axls

circulation functions obtained by Theodorsen in reference 33
for two-dimensional incompressible flow

quantities associated with the wing trailing edge

Dots over symbols denote derivatives with respect to time.
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DESCRIPTION OF THE METHOD

General

The procedure for flutter calculation used in this report is bas-
ically a Rayleigh, or modal-type, analysis and is illustrated herein with
uncoupled vibration modes although coupled modes can be used. (The use
of uncoupled modes in flutter calculations is discussed in detail in
refs. 22 and 34.) The flutter modes of the wings studied in this inves-
tigation are represented by the first and second bending and the first
torsional vibration modes of uniform cantilever beams. All deformations
are considered to be made up of vertical bending of an approximately
straight elastic axis and rotation about that axis. The wing root is
treated as though it were clamped along a line normal to the elastic axis
and passing through the intersection of the elastic axis and the root
chord. The dynamical equations involved in this type of analysis are
obtained from Lagrange's equations of motion in which the vibration modes
are used as generalized coordinates. These dynamical equations repre-
senting the balance between elastic, inertial, and aerodynamic loads are
derived in appendix A and are obtained (for the simple case of one bending
mode and one torsion mode) in the form

2

2 1 1 3 1
)y R 1fv 25,0 _ 1fb e . 1 '
[E(l * ) ] J; K(”r) i ltbr\[c') "<br) *an% dy}g tpbrameu/; = O )

and

I 1
l) fody's 8 - — f Wofg dy' =0 (2)
by 0

1y , gmf lﬂi
T AR R U B

where h and 6 are as defined in equations (A8) and (A9). These same
equations in a different form were used in reference 22. The values of
all geometrical, structural, and aerodynamic quantities to be used in

these equations are those values associated with sections normal to the

elastic axils.

The innovations of the present method consist of alterations in the
expressions for section lift P, pitching moment Mg, end complex circu-
lation function C = F + iG 1in order to approximate the aerodynamic
effects of finite span, taper, and compressibility. The section lift P
and pitching moment M, are expressed in terms of arbitrary section 1lift-

curve slope and aerodynamic center which are assumed to vary along the
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span of the wing. For any particular value of free-stream Mach number,
the spanwise distributions of lift-curve slope and aerodynamlc center

are calculated from well-known steady-state aerodynamic theory for flat
rigid wings. The spanwise distributions of the 1ift and moment on the
deforming wing are then found by using the aforementioned values of
static section lift-curve slope and aserodynamlc center in conjunction
with the "effective” angle-of-attack distribution resulting from oscil-
lation of the wing in each of the assumed vibration modes.l The values
of 1ift and moment thus obtained account approximately for finite span,
taper, compressibility, and deformation shape of the wing. However, it
is also necessary to take into account the effect of oscillatory motion
on the magnitudes and phase angles of the 1ift and moment vectors. In
the present method this is done approximately by utllizing circulation
functions (analogous to the familiar F and G functions of Theodorsen
(refs. 3% and 35)) which are modified on the basis of aerodynamic flutter
coefficients given by Jordan (ref. 27) for two-dimensional airfoils oscil-
lating in subsonic or supersonic flow. In the application of the circu-
lation functions thus obtained, the Mach number normal to the leading
edge 1s employed.

Formulating the aerodynamic forces and moments in this manner implies
the following assumptions:

(1) The bending and twisting deformation of individual wing sections
is accounted for in terms of the "effective' angle of attack only. The
effect of relative deformation on section lift-curve slope and aerodynamilc
center can be neglected. Camber deformation of sections ncormal to the
elastlc axis is not considered.

(2) The effect of oscillatory motion on the magnitude and phase
angles of the section 1ift and moment vectors is the same for each wing
section and may be represented by modified circulation functions associ-
ated with the Mach number component normal to the leading edge.

In view of the use of static lift-curve slopes and aerodynamic cen-
ters, application of this method at high values of reduced frequency
would be open to question. At low to moderate reduced frequencies, how-
ever, the approximation should be reasonable.

In the remaining sections of this description of the method are
discussed the alteration of section 1lift P and pitching moment My

by the introduction of static three-dimensional section lift-curve slopes

Ithe "effective" angle of attack is the downwash resulting from the
motion divided by the component of free-stream velocity normal to the
elastic axis.
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and aerodynamic centers, the calculation of these static aerodynamic
parameters, and the evaluation of the complex circulation function C
by utilizing two-dimensional subsonic or supersonic oscillating-airfoil
theory.

A detailed description of the flutter calculation procedure 1s given
in appendix B, and expressions for the elements of the final flutter

determinant are given in appendix A.

Expressions for Section Lift and Pitching Moment

In formulating the expressions for section 1lift and pitching moment
the following basic assumption is made: The flow over wing sections nor-
mal to the elastic axis consists of a quasi-two-dimensional noncirculatory
flow plus a circulatory flow in which the circulation is fixed by the
component of free-stream velocity normal to the elastic axls in conjunc-
tion with downwash distributions along chord lines normal to the elastic
axis (rather than by the free-stream velocity and downwash distributions
along streamwise chord lines). In contrast to the method of reference 22
the present method does not consider the circulatory flow to be two-
dimensional and incompressible in nature. It should be observed that the
concepts of circulatory and noncirculatory flow components as developed
in references 22 and 33 appear to have little meaning for wings with
supersonic edges. Nevertheless, for convenience, these concepts have
been utilized in the present method for wings with supersonic edges since
it is believed that inclusion of the appropriate section lift-curve slopes
and aerodynamic centers represents the principal aerodynamic effects on
the calculated flutter speed of wings with supersonic edges.

The section 1lift P and pitching moment My which are used in the
present analysis may be obtained from similar expressions in reference 22
by introducing variable section lift-curve slope Cla n and variable

s

aerodynamic center ac,. The procedure for making this generalization

is as follows:

First, the expressions for P and Mg wused in reference 22 are
written in the form

P = -npb® [ﬁ + vpd + Vpo tan Aeg - ba(§ + VT tan Aeaﬂ - Noncirculatory

2npv,bCQ } Circulatory (3)
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and

Mg = -npb% %«r a2> (5 + vpT tan Aea> + npvnbz(ﬁ + Vpo tan Aea.) +
¢ Noncirculatory

prja(.h + vpo ten Aea) + npvn2b2(e - abT tan Aea) -

J
Enpvnb2[é]= - (a + %)C}Q 1 Circulatory (1)

J

where Q is the downwash expression defined by equation (5a). These
equations are, of course, based on the assumption that flow with small
disturbances exists.

Circulatory components.- Only the circulatory components of these
expressions are changed. In the circulatory components of equations (3)
and (4) the value 2 for section lift-curve slope 1is replaced by the

variable Cla o’ end the gquarter-chord aserodynamic-center position
bl

(écn = - %) is replaced by the variable acp. The downwash expression Q

must also be altered to include the effects of variable section lift-curve
slope CzCL n &nd aerodynamic center acp.
b

The treatments of the circulatory components of 1lift and pitching
moment in references 22 and 33 are based on classical two-dimensional
Incompressible thin-airfoil theory, which indicates a section 1ift-curve
slope of 2rt and an aerodynamic center located at the qQuarter-chord posi-
tion. The circulation strength is therefore related to the downwash veloc-
ity at the three-quarter-chord position. This downwash as given in ref-
erence 22 is

Q=h+ vy@ + v,0 tan Aeg + b(% - ><é + vuT tan Aea) (5a)

and the distance between the bound vortex (quarter-chord) and the point
at which the downwash boundary condition is applied (three-quarter-chord)
G
a,n
"~ b. (See ref. 24

is b. For arbitrary C; » this distance becomes

a,n o

for a detailed discussion of the application of the downwash boundary con-

dition when (3 is other than 2x.) Then, if acp (location of bound
a,n e okt i 3

S BV R
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vortex) 1s also arbitrary, the downwash condition is applied at the posi-

lo,n

tion b + acp| measured positive rearward from the midchord. (See

fig. 1.) Then, in the expression for Q, the distance from the elastic
axls to the point of application of the downwash condition D % - a is

C1
replaced in the present analysis by b( L acy - a). Then for the
2

present method,

C
. 1 .
Q=h+ vy + vyo tan Aeg + b 2:,n + acp - 8 (e + vuT tan Aea) (5b)

Noncirculatory components.- The noncirculatory flow components con-
tribute to the 1ift and moment only & virtual mass effect which 1s com-
paratively very small except at high frequencies. Since, as mentioned
previously, the present method should probably be applied only to cases
involving low to moderate reduced frequencies, it appears that the non-
circulatory flow terms will constitute only a small fraction of the over-
all section 1ift and moment. Now, the noncirculatory components of sec-
tion lift P and moment M, which are used in references 22 and 33 and

shown in equations (3) and (4) of the present report are derived from
the velocity potentials for unsteady two-dimensional incompressible flow
about a flat plate. The virtual mass effects resulting from these non-
circulatory flows are dependent only upon the velocity perpendicular to
the wing surface and do not depend on the stream velocity as such. For
low to moderate frequencies, the velocity perpendicular to the wing sur-
face will be small compared to free-stream velocity. Therefore, for wings
with all edges subsonic, any effects of compressibllity on the magnitudes
of the noncirculatory flow terms should be small, and the consequent
effects on the section 1lift and moment should be of second order. It is
concluded that, for wings with all edges subsonic, use of the noncircu-
latory components of 1lift and moment in essentially the two-dimensional
incompressible form should result in negligible error in the calculated
flutter speed.

In view of the relatively small maegnitude of the noncirculatory flow
components, the two-dimensional incompressible form is also used as a
first approximation to virtual mass effects for wings with supersonic
edges as well as for wings with all edges subsonic. At low reduced fre-
quencies, the noncirculatory terms might even be completely neglected
without introducing major errors into the calculated flutter results.
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The section 1ift and pitching moment used throughout the present
investigation are made up of circulatory components generalized as pre-
viously described and noncirculatory components used in the unaltered
two-dimensional incompressible forms shown in equations (3) and (L4).
The resulting expressions are for the section 1lift

P= -npbe[.ﬂ + vné + vné ten Agg - ba('e' + vn'i’ tan Aea)] - Noncirculatory
Cla, ,PVnbCR } Circulatory (6)

and for the pitching moment about the elastic axis

Mg = -npbh(% + 32>(5 + vpT tan Aea) + npbzvn(ﬁ + vn0 tan Aea) +
? Noncirculatory

pr5a<h + Vp0 tan Aea) + npbevna(e - abTt tan Aea) -

o}
1
211 a,n
2npvyb l:-z- - (a - acn)c = :]Q fCirculatory (7)

where the downwash expression Q is that defined in equation (5b).

Note that in accordance with the discussion 1n reference 22 the terms of
equations (3), (4), (6), and (7) associated with the variation of the
velocity potential with lengthwise distance y' are omitted.

Substituting expressions (6) and (7) into the dynamical equations (1)
and (2) and using equation (5b), together with the assumption of harmonic
motion, yield two homogeneous flutter equations in the two unknowns h
and 8. The flutter determinant resulting from these flutter equations,
expressions for the elements of the determinant, and the method used in
solving the determinant for the flutter condition are given in appendix A.
The remainder of the description of the method is concerned with the evalu-

ation of the static aerodynamlc parameters Cj;, , and acy and the cir-
)

culation functions F and G whilch appear in the expressions for the
determinant elements.

Static Aerodynamic Parameters

All calculations of static aerodynamic parameters are made by con-
sidering the wing to be rigid and flat.
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For M = 0 (reference).- The reference flutter speed VR is found

for each wing by using Cla n= 2r and acpy = - % at M= 0. With
b

these values the flutter equations (Al2) and (Al13) reduce to those given
in reference 22.

For 0 £M < 1.- At subsonic (and incompressible) speeds the span-
wise distribution of C3  1s found by the lifting-line method of ref-

erence 24. In reference 24 charts of the necessary influence coefficients,
which facilitate rapld calculation of the loading, are presented. Although
this method involves the application of boundary conditions and the eval-
uation of load intensity at only seven spanwise stations, the resulting
accuracy 1is considered adequate for present purposes, and the method i1s
used because of its simplicity. Simple sweep theory is used to relate

C1
) to Cy - Thus, Cy = —< . For all subsonic speeds the
o A,n a,n [Jo):] Aea
aerodynamic center is taken at the quarter-chord position (%cn = - %).

However, at subsonic speeds higher than those calculated herein it may
become necessary to take aerodynamic-center changes into account. Details
of the loading calculations are given in appendix B.

For M > 1.~ At supersonic speeds when the wing leading edge is
swept behind the leading-edge root Mach line (subsonic leading edge), the
equations of reference 25 are used to calculate the static distributions
of Cla,n and acp. The method of reference 25 is based on a superposi-

tion of conical flows, and relatively simple formulas are given for cal-
culating the loading. When the leading edge llies ahead of the leading-
edge root Mach line (supersonic leading edge), the equations of
reference 26 are used. Reference 26 is also based on conical-flow
concepts. These equations for lifting pressure have been used in
integrals which yleld section-lift and pitching-moment coefficients cla

and Cpg (and hence ac). The resulting expressions and details of
their application are given in appendix B. The equations for Cla and
Cmg, &iven in appendix B make it unnecessary to refer to references 25

and 26 for present purposes.
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Circulation Functions

The complex circulation function
C = C(M,knr) = F(M,knr) + 1G(M,knr)

appearing in equations (6) and (7) and in the expressions of appendix A,
modifies the otherwise-static circulatory components of 1ift and pitching
moment to account for the effect of oscillation. The F function modi-
fies the load component which is in phase with angle of attack, and the

G function introduces out-of-phase load components. Values of the F
and G functions used in reference 22 were those developed by Theodorsen
(ref. 33) for two-dimensional incompressible flow about an oscillating
airfoil. 1In the present investigation these values are again used for

M = O, but the functions must be modified to account for compressibility
effects at M > 0. The modification used herein is based on loading
functions for two-dimensional subsonic or supersonic flow about an oscil-
lating airfoil as given by Jordan in reference 27. The relations between
these loading functions and the F and G circulation functions are
derived 1n appendix B. Although the flutter calculation is based on a
consideration of sections normal to the elastic axis, the governing Mach
number for the determination of the circulation functions is taken to be
that normal to the leading edge. Thils choice of governjing Mach number
arises from the fact that the nature of the flow over a section of wing
is influenced by whether the leading edge 1s subsonic or supersonic.

Although it would seem straightforward to use the appropriate Fg
and Gg functions directly in the flutter calculations, this procedure

gives poor results in comparison with experiment. (See figs. 3 and 9,

G,
for example.) The large phase angles tan-1 f% of the complex circula-

tion functions associated with two-dimensional compressible flow were

found to be ineppropriate for three-dimensional wings. It was antici-
pated that if phase angles remained moderately small (i.e., if G remained
fairly small relative to F)l, the calculated flutter speed would be rel-
atively insensitive to changes in the megnitude of G. That is, 1f G

is not large relative to F, the actual value of G 1s unimportant. The

1The assumption of small phase angles implies an upper bound on the
values of reduced frequency kpr for which the present method can be
used. However, as previously mentioned the use of statically based load
distributions also restricts the method to moderately small frequency
values, so the present assumption imposes no further limitation.

e .;‘“‘
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predominant effect on the loading of changing Mach number would then lie
in changing the mesgnitude of the in-phase component associated with F.
The form of the complex function C which is used in the present calcu-
lations is therefore taken to be

= C(MLE,knr) = F + 16 = %’(FI ¥ iGI>

This function contains an in-phase component which is the same as that
derived from reference 27 for two-dimensional compressible flow, but the
associated phase angle 1s independent of Mach number. Hence, the phase
angle 1is the same as that given by Theodorsen in reference 33.

In order to investigate the validity of this reasoning some calcu-
lations were also made by using

C = C<MLE’an‘> = FC + 10

Also, to investigate the sensitivity of the flutter calculations to dif-
ferent forms of circulation-function representation, some calculations
at the higher Mach numbers were made by using

F + G
\/FI + GI

This function has zero phase angle, and its amplitude 1s the ratio of
the magnitudes of the resultant vectors for compressible and incompres-

sible flow.

Further details of the circulation-function calculation are given
in appendix B. The method for solving the final flutter determinant is

given in appendix A.
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RESULTS AND DISCUSSION

Presentation of Results

Flutter characteristics have been calculated by the present method
(using three vibration modes) for wings with sweep angles from 0° to
52.59, aspect ratios from 2.4 to 7.4, taper ratios of 0.6 and 1.0, and
center-of-gravity positions between 34 percent chord and 59 percent chord.
The plan forms of these wings are shown in figure 2. The calculated
results are compared with experimental data obtained in the Langley
26-inch transonic blowdown tunnel (refs. 28 to 31) and in the Langley
9- by 12-inch supersonic blowdown tunnel (ref. 32).

Unless otherwise indicated the subsequent discussion deals entirely
with calculated results obtained by using the complex circulation function

Fo
C= ={Fy + 1G
7 ( I 1)
I

Wing designation.- The three-digit system used to identify the wings
with taper ratio of 0.6 is the same as that used in reference 30. The
first digit in this system is the aspect ratio of the full wing to the
nearest integer. The second and third digits give the quarter-chord
sweep angle to the nearest degree. For example, wing 445 has an aspect
ratio of 4, a sweep angle of h5°, and a full-wing taper ratio of 0.6.
Since some of the wings discussed in thils paper have identical plan forms
but different center-of-gravity positions (ref. 31), a single letter is
appended to the plan-form designation to signify a shifted center of
gravity. For example, wing 4L5 has a center of gravity at approximately
L6 percent chord, whereas the center of gravity of wing LUSF is at about
34 percent chord, and that of wing 445R is at about 58 percent chord.
Wing 400 has a center of gravity at approximately 45 percent chord, but
wing 4OOR has a center of gravity at about 59 percent chord.

For the wings with taper ratio of 1.0, the same system is used,
except that a fourth digit 1 is added to distinguish the taper ratio.
For example, wing 4451 has a full-wing aspect ratio of 4, a sweep angle
of 45°, and a taper ratio of 1.0.

Flutter characteristics.- Calculated flutter characteristics V/VR,
uﬂubd and kypy and the associated values of Vi, M, wy, and p are

given in table I for several wings (see fig. 2) at several Mach numbers.
The calculated values of V/VR and uyah‘ are compared with experimental
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data in figures 3 to 14 and 15 to 26, respectively. The experimental
flutter points shown were obtained at various values of density p;
whereas, for a particular wing, all of the points calculated by the pres-
ent method were obtained at a constant value of p which represented
approximately an average of the experimental densities. For each experi-
mental point, however, the normalizing VR was calculated by using the

appropriate experimental density. On the basis of previous experience,
it is believed that normalizing the experimental flutter speeds in this
manner essentially accounts for density effects so that the resulting

(V/VR)exp is considered to be nearly independent of p, at least over

the range of density variation which occurs herein.

The static distributions of Cy . and acp used in obtaining the
)

calculated flutter characteristics are shown in figures 27 to 35. For

all of the flutter calculations presented in this report, the flutter

modes of the wings were represented by a combination of the first torsion
mode shape and first and second bending mode shapes of a uniform cantilever

beam.

The reference flutter speeds Vg used in references 28, 30, and 32

for wings 430, 245, 400, 4001, and 70Ol were calculated by employing
only two degrees of freedom (first bending and first torsion). Since
three-degree-of -freedom calculations yield values of VR which are

slightly lower than the two-degree-of-freedom values, the experimental
V/VR values for these wings have been multiplied by the ratio

VR for two degrees of freedom
Vg for three degrees of freedom
flutter-speed ratios as presented herein are normalized by VR for three

so that both calculated and experimental

degrees of freedom.

Flutter Speeds

As shown in figures 3 to 14, the flutter speeds calculated by the
present method for all wings demonstrate a characteristic decrease as
Mach number increases from O to near 1.0. This decrease is the result
of increasing Ciy which 1s caused by compressibility at high subsonic

speeds. It should be noted that at M = 0 the differences between the
V/VR values shown and the value 1.0 result solely from the effect of

finite aspect ratio. As Mach number increases above 1.0, decreasing
Cla and rearward shifting ac cause a rapid rise in the flutter speed.

In the immediate vicinity of M = 1.0 the flutter-speed curves are shown
dashed to indicate that this region is inaccessible to the present
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calculations. This inaccessibility results from the breakdown of both
subsonic and supersonic three-dimensional steady-flow wing theoriles near
M = 1.0. It should be noted that the minimum value of V/VR will gen-

erally occur within this inaccessible region, and, hence, A can-
VR /min
not usually be calculated by use of theoretical static aerodynamic coef-
ficients obtained from the wing theorles employed herein. It is possible,
however, to fair a reasonable curve through the neighborhood of M = 1.0
by making use of the adjacent subsonic and supersonic calculated points.
The extent shown for the dashed portion of the curves should not, of
course, be interpreted as representing the limits of the inaccessible
region. No attempt has been made to evaluate these limits, and the range
shown in the figures is only illustrative.

For all of the swept wings the calculated flutter-speed curves of
figures 3 to 14 are in very good agreement with the experimental data at
all Mach numbers. In general, the calculated curves actually lie within
the scatter of the experimental data. For wing 445 (fig. 3) there are
no experimental data in the range 1.4 <M < 1.75. However, the leveling-
off tendency demonstrated by the calculated flutter-speed curve in this
Mach number range is in qualitative agreement with data for other similar
wings.

Comparison of the flutter-speed curves for wings 445, L4U5F, and 44SR
(figs. 3, 4, and 5) shows that the rather large differences between the
center-of-gravity positions for these wings cause only very slight dif-
ferences in V/VR at subsonic speeds. At supersonic Mach numbers, how-
ever, the data show that the characteristic rise of flutter speed with
increasing Mach number becomes more rapid as the center of gravity is
moved progressively forward. This behavior is also predicted by the
calculated curves.

The close agreement between calculated and experimental flutter
speeds for wing 245 (fig. 6) is rather surprising in view of the small
aspect ratio of this wing. In general, the use of a strip-theory type
of analysis and uncoupled vibration modes for a wing of such small aspect
ratio (panel aspect ratio = 0.91) would be open to question. The agree-
ment in the present case may, therefore, be fortuitous.

For most of the wings shown in this report no tip correction was
applied to acpy to account for the forward shift of aerodynamic center

within the tip Mach cone. (See discussion of tip corrections in appen-
dix B.) For wing 430, however, the tip Mach cone covered so large a

portion of the wing that it was considered necessary to apply a tip cor-
rection to acp. (See figs. 28(d) and (e).) At M = 1.15470, this cor-

rection appears to be rather large. However, a preliminary calculation



i -:. ;.: 19

NACA RM L5TL10

at this Mach number without the correction to acp yielded a value of
flutter speed only 13 percent higher than that shown. It appears, there-
fore, that unless the tip Mach cone covers a large portion of the wing,
the application of a tip correction to acp 1s not necessary.

For the low-aspect-ratio unswept wings (figs. 10, 11, and 13) agree-
ment between calculated and experimental flutter speeds is not as good
as for the swept wings. For wing 400 (fig. 10) the agreement is fair up
to about M = 1.0, but the calculated values overpredict the flutter

speed by as much as 2% times at M = V§. The magnitude of this error is

believed to be related to the proximity of the local aerodynamic centers
to the local centers of gravity and the fact that linear theory predicts
an aerodynamic center that is too far rearward. This hypothesis is sup-
ported by the results obtained for wing LOO with its center of gravity
shifted from about 45 percent chord to about 59 percent chord (wing L4LOOR).
Figure 11 shows that for wing 4OOR at supersonic speeds the calculated
curve overpredicts the mean experimental values by only about 13 percent.
The erroneous results obtained for wing 400 should probably not be inter-
preted as indicating a limitation on the present method of flutter calcu-
lation. Rather, these errors appear to arise from the well-known limita-
tions on the use of linearized flow theory to calculate load distributions
on wings of finite thickness. Wing 400 at supersonic speeds seems to con-
stitute a very sensitive case in which a small inaccuracy in the location
of the aerodynamic center leads to large errors in calculated flutter
speed. In the case of wing 40Ol (fig. 13) the calculated and experimental
values are in very good agreement up to about M = 1.0. At supersonic
speeds, where the local aerodynamic centers are shifted rearward toward
the local centers of gravity, the theory asgain overpredicts the experi-
mental values, this time by up to 37 percent. This deviation is not
surprising in view of the fact that wing 4001 is not greatly different
from wing L400.

The calculated flutter speeds for the high-aspect-ratio unswept wing
(wing 7001, fig. 1iL4) are in good asgreement with experiment throughout the
Mach number range. The improved agreement for this wing as compared with
that for the low-aspect-ratio unswept wings may be caused to some extent
by the decreased thickness of wing 7001 near the tip. Wing 70Ol was
tapered in thickness from L percent at the root to 2 percent at the tip,
whereas wings 400, 4OOR, and 4001 were of constant L-percent thickness.

The flutter-speed curves shown in figures 3 to 14 were calculated
by using the complex circulation function

Fo
C = e FI + iGI
F1
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as described previously. The few points obtained by using the function
C=Fc+io

differ from the curves by no more than 7 percent. This close agreement
supports the previously stated contention that if phase angles (tan-l %

are moderately small,l the calculated flutter speed will be relatively
insensitive to changes in G. Figures 3 to 14 also show that flutter
speeds at the higher Mach numbers calculated by using the function

\/F2 G2
C=_C—+_c<l+io)

I2 + GI2

differ from the curves by no more than 10 or 11 percent. Although, as
expected, the points calculated in this manner do not agree with experi-

F
ment as well as the curves [ obtained with C = fg(FI + iGI)), the small
I
differences between them do point out the relative insensitivity of the
calculated flutter speed to the form of circulation-function representa-
tion used.

In making the flutter calculations presented herein it was observed
that for all but the highest subsonic speeds the circulation functions Fo

and G¢ are not greatly different from the functions Fy and Gy of
Theodorsen. At M = 0.75 for the wings shown in figure 2, the use of

F

C=TF; + 1G; 1instead of C = EQ<FI + iGI) changes the flutter speed by
I

only about 4 percent or less. It would seem, therefore, that the modified

circulation functions need be employed only at high subsonic and super-

sonic speeds.

114 should be clearly understood that the quantity tan™1 % is the
phase angle of the complex circulation function C = F + iG and should
not be confused with any phase angles associated with the wing
displacements.
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Flutter Frequencies

F
The calculated curves (%ith C = EEQFI + iGI)> of flutter frequency
I

(figs. 15 to 26) indicate that for all of the swept wings the frequency
is well predicted at subsonic speeds. At supersonic speeds the usual
rise in frequency is predicted by the theory, but it occurs at Mach num-
bers higher than those indicated by the test results. In general, the
agreement between calculated and experimental flutter frequencies is not
as good as the agreement between calculated and experimental flutter speeds.
The frequencies calculated for the swept wings by using

FC2 + GC2
C= 1+ 10)

2 2
FI + GI

are all excessively high, except at Mach numbers where the leading edge
is supersonic or nearly so. At these higher Mach numbers the frequencies
thus obtained are generally in better agreement with the experimental

F
values than are the values obtained with C = EQ(FI + 1GI).
I

For unswept wing 4001 (fig. 25), the number of calculated points is
not sufficient to indicate whether the pronounced dip in frequency, which
occurs at high subsonic Mach numbers, is predicted by the theory. At low

F
supersonic speeds the calculated curves |with C = FE(FI + iGI) over-
I

predict flutter frequencies by a substantial amount. However, the dif-
ferences between theory and experiment become much smaller at the higher
supersonic speeds, except in the case of wing 400 (fig. 22). The fre-
quencies as well as the flutter speeds of wing 400 are overpredicted by

a factor of nearly 2%. As in the case of the swept wings the frequencies

for the unswept wings obtained by using

\/F 2+ Gp°
C=—-—C——C(l+10)

are all excessively high.
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Limitations of the Method

Although the limitations of this method have not been fully evalu-
ated, some of the more important restrictions may be qualitatively
discussed.

Frequency range.- As stated previously, the use of spanwise load
distributions based on lift-curve slopes and aerodynamic centers calcu-
lated from steady-flow wing theory imposes an upper bound on reduced-
frequency values for which the method can reasonably be used. No attempt
has been made to determine the upper limits of reduced frequency for which
the method is usable, but good results for values of knr up to 0.2 are

shown herein.

Mach number range.- The nature of the equations for the circulation
functions (egs. (B38) and (B39) or (B4O) and (B4l)) shows that at Mygp = 1,
the circulation functions become Fp = Go = O. This implies that a small
range of Mach number in the immediate vicinity of Mjgp = 1 1s inaccessible

to the present method. This is not a serious limitstion, however, because
a curve of flutter speed or frequency can be reasonably faired through
this inaccessible region by making use of adjacent points. For the wings
calculated in this report, there appear to be no sudden or extreme fluc-
tuations of flutter speed or frequency in this region.

The limitations on Mach number range appertaining to the particular
steady-flow wing theories used are, of course, carried over to the flutter
calculation. In general, this carried-over restriction will exclude free-
stream Mach numbers in the immediate vicinity of 1.0, as was mentioned

previously.

Flutter modes.- The use of uncoupled modes in combination with a
strip theory involving strips normal to the elastic axis is not an
essential requirement of the present method of flutter calculation. An
analogous calculation procedure would result from the use of coupled
modes together with streamwise strips. Flutter modes which involve
significant amounts of camber deformation obviously cannot be treated by
the method in 1ts present form. As mentioned previously, all flutter
calculations presented herein were made by using the mode shapes of a
uniform cantilever beam. Since the results of the flutter analysis are
not very sensitive to slight changes in mode shape, such a procedure is
reasonable as long as aspect ratio and especially taper ratio are not
too small.

Plan-form range.- The strip-theory concepts which are employed in
the present method also impose plan-form limitations. When aspect ratio
or taper ratio or both become so small that the variables (notably herein,
serodynamic loading and circulation funetimne) ~csociated with a given
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section of the wing cannot be treated by strip theory, then the present
method is no longer usable.

Center-of-gravity position.- Although the influence of different
center-of-gravity positions was investigated for only two plan forms
(wings 445 and 400), it appears that, in cases for which the local centers
of gravity are located close to the local aerodynamic centers, linearized
flow theory should be employed only with great caution. This limitation
is not peculiar to the present method. It would apply to any flutter cal-
culation for which the aerodynamic loadings are obtained from linear
theory.

At subsonic speeds, neither the swept nor the unswept wings demon-
strate any appreciable sensitivity of V/VR to center-of-gravity posi-
tion. This result would be expected since at subsonlc speeds local sero-
dynamic centers are at or near the quarter-chord position and are not in
proximity to the local centers of gravity.

CONCLUDING REMARKS

A method has been developed for calculating flutter characteristics
of finite-span swept or unswept wings at subsonic and supersonic speeds.
The method 1s basically a Rayleigh type analysis and is illustrated herein
with uncoupled vibration modes although coupled modes can be used. The
serodynamic loadings are based on distributions of section lift-curve
slope and local aerodynamic centers calculated from three-dimensional
steady-flow theory. These distributions are used in conjunction with
the "effective' angle-of-attack distribution resulting from each of the
assumed vibration modes in order to obtain values of section 1ift and
pitching moment. Cilrculation functions modified on the basis of loadings
for two-dimensional airfoils oscillating in a compressible flow are
employed to account for the effects of oscillatory motion on the magni-
tudes and phase angles of the 1ift and moment vectors.

Calculation of subsonic and supersonic flutter characteristics for
12 wings of varying sweep angle, aspect ratio, taper ratio, and center-
of -gravity position and comparison of the results with experimental
flutter data indicate that the present method gives generally good flutter
results for a wide variety of wings. The method is, however, subject to
the following limitations:

(1) It is probably not applicable at high values of reduced frequency,
althcugh good results are shown for values of reduced frequency up to
about 0.2.
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(2) It cannot be used at free-stream Mach numbers in the immediate
vicinity of 1.0 nor in the immediate vicinity where the Mach number com-
ponent normal to the leading edge is 1.0. However, flutter speeds and
frequencies may be interpolated through these regions.

(5) The use of a strip-theory approach and the absence of camber
flexibility preclude treatment of wings with low aspect ratio and low
taper ratio (e.g., delta wings). Good results have been obtained, how-
ever, for a 45° swept wing with a panel aspect ratio of 0.91.

(4) Caution must be used when applying the method to wings for which
the local serodynamic centers are close to the local centers of gravity.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., November 26, 1957.
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APPENDIX A

DERIVATION OF THE FLUTTER EQUATIONS AND FLUTTER DETERMINANT

Flutter Equations

Basic assumptions.- The dynamical equations used in the present
method are essentially the same as those derived in reference 22, except
for changes in the expressions for 1ift P, pitching-moment M., and
circulation functions F and G. The general assumptions appertaining

to the method of reference 22 thus apply herein also. Briefly, the
assumptions made with regard to the equations of motion are as follows:

(1) The elastic axis of the wing is approximately straight and
the oscillatory motion may be represented by a combination of the
uncoupled bending and twisting vibration modes of the wing with respect
to this elastic axis.

(2) The wing root is treated as though it were clamped along a
line normal to the elastic axis and passing through the intersection
of the elastic axis and the root chord.

(3) The analysis is based on geometric, structural, and serodynamic
quantities associated with sections normal to the elastic axis. These
assumptions are discussed in detail in reference 22.

Application of Lagrange's equations.- The dynamical equations
result from the application of Lagrange's equations of motion to the
flutter problem. For simplicity, the flutter equations are derived
herein for the case of one bending mode and one torsion mode.
Generalization to an arbitrary number of modes is easlly accomplished
in the flutter determinant as will be illustrated. (The notation of
of ref. 22 has been followed where possible.) In the present method
the appropriate expressions for kinetic energy

_ffﬁl m[fh(y')]edy' +%Q2L1 Ia[fe(y')Jady' +

T =

-

150

éj;z mxab[fh(y’)] [fe(y')jfdy' (A1)
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potential energy

1 2
U= _;%2122 fo mf, 2dy ' + %%232 fo I, fe°dy’ (a2)

and virtual work

BW = Qu8h + Qgd8 (A3)

are the same as those of reference 22. The generalized forces are left
in the form

1 g, -
Q, = fo (P - mp2 =2 fhg)fhdy' (AL)
and
L 5 By . -
Qp = fo (Ma. - I & fag)fedy' (a5)

Substituting these expressions into Lagrange's equations

d /oT oT au _

azg;)'%‘“a—a'qh (e
and

a forT oT oU _

E(@)'@*a—g“% (A7)

and assuming harmonic oscillations

b= [£,()]n = [r ()| nge™t (48)
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and
0 = [fe(y')]g = {fe(y'ﬂ o etot (A9)

lead to the equations of flutter

2 1 1 1
o - . 1 1708, 24,0 1f{b\3 . 1 .
.Lz (2 +1gy) j j:) ?(Bj f,%ay"h + [—br ‘ /; ;(b—r-> X fpfody'l 8 - R fo Pfdy' = 0 (A10)

and

1 2 1.2, k4 1
- 1/p)’ ' 2% - Ta”(b\*p 24 b . 1 :
’:br fo "(br) xufhtedy]n + (b Lz (1 + 1g,o_) ] fo = (br) fy 8 X j; M fody' =0 (A11)

In the calculations of the present report, uncoupled beam bending and
torsional mode shapes hy and aJ are used for the flutter deflection
functions f} and fe. The introduction of uncoupled modes into the
flutter equations is discussed in detaill in references 22 and 3,

Expressions for the elements of the flutter determinant resulting
from equations of the type (A10) and (All) are given in the following
gection both for the case of an arbitrary number of vibration modes
and for the case of one torsion and two bending vibratlon modes as used
in the present analysis.

The Flutter Determinant

Inserting equations (6) and (7) into equetions (A10) and (All)
and using equations (A8), (A9), and (5b) yield two homogeneous equa-
tions in the two unknowns h and 8, which may be written in the

form

Ah + Bg = O
(A12)
Dh + E6 = O
and for a nontrivial solution to exilst,
AB
=0 (A13)

DE
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Now if u Dbending modes and v torsion modes are employed, the

elements of the flutter determinant (Al3) will become matrices Aij’
Bij’ Dij’ and EiJ’ such that

Ag; B
S =0 (A1L)

Dyy Eyg

The solution of equation (All) gives the conditions of flutter
(flutter speed and frequency). The procedure for solving this determi-
nant is given at the end of this appendix. Expressions for typical
elements in the matrices AiJ’ Bij’ Dij’ and EiJ are as follows:

[(%,\2 l122 b oo
Aii={(—&i-) <1+1ghi)-1zfo B“hy“dn - 1f0 B“h, “dn +

1 b.. tan 1 dh
1l—f3—-f c, Bnfan+ nAea 02f ¢, B—hdn+
ke Jo  la,n k2Jo @n dn

1 dh
brta“eaf B =t hn (1=1,2 3 ...u
khr 0 n

1 1
1 C

1 1 dh
b, tan Ag dh tan
s 8 _C f C;, B2 hdn+1 _-_-——“eaf 82 3 nyan
0 a,n 0 dn

I k2 an Py Kpp
i.=l’ 2’ 5,.--1,1
(32112)5)""1)
14
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1 1
)(a' 3, b l C
Byy = -bl — B dn + — C Bh;a,d
1) r j; hyagdn + — 2Jo tan 1340 +
bl 5(C1, o3
1—,-(—— la., B -?12—+acn- ahiajdn+b lj; Bahiu.ddq+
2 1 C
byl bt 1l 4
1 — Bahic,Jd'q + = a.: flea C f Cy B2<_°'13 + acp - a)_a_'j hydn -
knrJo knr2 0 2n an
2 1 da
bt
1—1';mA—eEf Baaa—‘j-hidq 1=1,2,5,...u)
kny 0 g (J=1,2,5,...v
1 1l
o 53 3
Dyy = -brlf ra B hJaidn + bl B ahJoLidn -
0 0
b1 1
r* C 2
=L - an -
1 — knr./; Cla.,nB (a ac)Jin
bretan fea C 1 2 dhy
f ¢, B (a - acn) —= aydn -
x knr2 0 a,n dn
2
b, tan dh
2 Aeaf Ba Jaid"l i=1,2,3, .. .v
knr 0 dn J=1,2,3 .. .u
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2 1 Cy
b,."1 3
ikr f B<?:-Ln+acn-a>aidn—
nr Y0
1 c
T AT - TS N
knp“v 0 a,n
brrtan Aeg 1 Bcla.n
5 f B 2’ + ac, ———a.idn+
knp 0
botan Ay L1 4/ da,
1 ———— B3 +a]—= a,dn i=1,2,3, .. .v
8 i ’ ’ ’
¥nr 0] an
2 1 1
bl ¢ 2 2/‘ 1+<1 2>
Eyjy = - —_— c B (a - ac_Jo,a.,dn - b "1 B{z+a )a,a,dn -
1 L IV la,n ( n) 1 r 0 8 1
6,21

i

1l 1
C 3 “a,n >
— C B2 4 - - +
j; 2 , ( B ac, - a (a acn)aimjdn

(equation continued on page 31)
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Cet
e

b2 pl (%
i \/ B3 —L1 4 ac, - & aiaudn -
knr 0 2xn

bpoten Aea Jf]' 3 la,n da
c B |2t 4 ge,. - a)]fa - ac,)— a,dn +
b1 0 la,n 2n n ( n) dn i 1

knrz

b..tan 1 5(C do,
__I;____A_e_&_f Bj(__ELE + acn __'j. fo dn +
o 2% a 1

X 2 yl
b _Jtan 1 d
(ot Aee [T ou AT g 1 =1, 2, 3,
8 an 1
knr 0 yl J=1, 2, 3, v
143

In the special case of three degrees of freedom (first and second
bending and first torsion modes) used throughout the present investiga-
tion, the flutter determinent (eq. (Al4)) becomes

Aj; BAp By
Apgy App Byl =0 (A15)

D3 Py Enn

The elements of this determinant can be conveniently expressed in the
forms

a
G F L4 F G
A = {84 + 85 —— + & + 1 - 8 + a - RyZ
11 ( 17 "2%,,. 2k r2> <knr 2%,y Dk 2) 1

_ G F b F G
Ayp = (bl + by g + b3 knr2> + 1(:;nr bog—*t P33 )
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o
B
W
s
H
AM)
=
B
n
g -
+
oY
W
o
(]
LI

g
_ G F y F G
B2l-(fl+f2——+f5 2>+1<—- £ g+ 5 2)
nr nr
g
= G F L F e
Dn'(gﬂge%r*gs?)”(g Sk, "8 2
r

and
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=brtanAea®

8.3 =

b1=‘1@

b tanAe
b3=_LT£

Q
[}

1 f;?%.'@'*brl@

Q
1

bl b2t
5 _,rt'_@+raf/\ea®
a; = -1 (®

b, tan
d5= r ﬁAea

1]
1]

1 = @'1@

prra
br tan éi&
65 - 17 @

fl=§g‘%_'+brl @

bl batan
ort + L Aea@

f5=1r n

gl_ar;ér * byl @
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b2t
- :n ~ee g, = 'brEt‘a‘n Aeg @
- b1
L @ v & ny = ZL @
_ 2
Thp tan feq b, = b 2tan A, @

- b
%‘-brel@ oy = r, @

b2 3
bil@'b_rt—:IE@ m)_;'.'brzz@*'br}tan[\ea@

b Jtan A_, €6

S e wm I wae

npbr2 ﬁpbrz

the circled numbers represent the followlng integrals:

1 1
2 2
f mh, dn @5 = f mhy dn
0 0

fo : 8%n,%an @)’ - f 01 8%h,2an

1 1
f c, Bnfan GJ - f c, Bn,%an
0 a,n 0 o,n
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c, B ahy h.d:
7'cz.,n an '+ g

®

2,

G =

)

B2hlh2dn

®
2,

Q
o2,

C, Bh,h,dy
za.,n hl 2

Bdh h.d
T 4l
a,n 2

n
o>
=

Q

o~

[oH

=3
i

dh
2 1

©
2,

mBxhy adn

®
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1 2
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a,n 4n

l
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1
@ = f Baahza.dn
0

1
2
@§= f B hpadn
0
& - [Fo e
2n
ac, - a)%?]'- hsdn
@ f Bia—hdn
1
@ = f 2 a8 - acn)c,hedn
0
B‘?(a -

a- [

@ f Boa flg- adn

®

1
2
L Cza’ nB2 (a - acn)a an
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1, 1 1
@ = f B (-]z + ae)a,adn @ = f c, Bo|—®%,n
0 8 0 a,n 2n

1 1 1 Cy
@ = f - L @ = f c. BI|l—.n ,
Jo 25 : o lo,n 2x
ac, - a)a.ed-q ac, - a) (a - acn)-aﬁ adn
1 2 1
3(_‘a,n f u(l Q)da.
= B —=2= 4 = B (= + a"]— ad
& j:) 2n & o an

da
—_— ad
B.C> n n

These integrals are easily evaluated numerically. Only about one-half
of these integrals contain Cla n or ac,. Hence, only these integrals
J

change with Mach number. For a given wing the remaining integrals may
be evaluted once for all. Note that the integrals are independent of
density p. The density appears only as a multiplying factor in 81,

cl, el, fl, gl, hl, m Rl, R2, and R}.

Solution of the Determinant

For a given wing at a given Mach number the three-by-three flutter
determinant (eq. (Al5)) was solved for Z on an electronic digital
computer for various values of the parameter knr (and assosiated values

of F and G). This evaluation of Z yielded values of

and g
v

by,

corresponding to the various knr values. A plot of g against
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then gave the value of Ko and 'n for which g = 0. These values

by
by
knp = o—
Vn
and
Vvn _ Vn
bply, Dy

define a flutter point. Then the flutter speed V 1is

vV = Vn b I'wCL
bﬂqx cos Aea

and the flutter frequency o 1is

® = k. X ’n X Wy
T by
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APPENDIX B
PROCEDURE FOR MAKING FLUTTER CALCULATIONS

The following procedure was used in msking the calculations presented
herein.

Summary of Required Information

First, a summary sheet is set up similar to that shown in table II.
The entries on this sheet represent all the information necessary for the

evaluation of integrals (:) to @Z), coefficients a; to ms, and Ry,
Rp, and Rz 1listed in appendix A. These coefficients together with the

circulation functions F and G (calculation of which is discussed at
the end of this appendix) permit evaluation of the determinant ele-
ments A3y to Ej; and, hence, solution of the flutter determinant as

described in appendix A.

Colums (1) to (5) of the summary sheet contain wing mass and elastic
parameters which, in the present case, were determined experimentally.
All of the experimental flutter data shown herein were obtained with the
wings mounted on a fuselage. (See refs. 30 to 34.) The calculations
were therefore made considering the wings to be cantilevered from the
@, 2
side of the fuselage which was assumed fixed. The quantities ay, <Z§%> y

2
qu% , and 1 1listed at the top of the summary sheet are also measured

values. Column (6) contains values of B = ll, the nondimensionalized

T

semichord measured perpendicular to the elastic axis. The nondimension-
alizing value by, is the semichord b at station n = 0.75. Values

of b may be obtained from the following equations:

w|o

~ Ere - b1E
- (k1 + Ko) + (Kl - Kp)a (1)
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where

ELE = 1 tan A1E (B2)
Erp = b + 1 tan Apg (B3)
T Ap(1 + Ap)

s = L cos Aeg

S
K, = cos( 1.E Aea)
cos Mp
> (B4)
cos -
Kp = (Aea ATE)
cos Arp
11-A
tan App = tan Ac/h + K Y
\ (B5)
L1 -
tanATE=tanALE-Kl+;‘
J

The gecmetrical quantities appearing in these equations are shown in fig-
ure 36. Note that in equation (B3) the values of aspect ratio .A.p and

taper ratio Kp to be used are those obtained by considering the side of

the fuselage to be a reflection plane. In equations (BS) it is immaterial
whether A and A are obtained by considering the reflection plane to be
at the side of the fuselage or at the fuselage center line.

Columns (7) to (12) of the summary sheet (table II) are the ampli-
tudes and slopes of the uncoupled vibration mode shapes. These mode
shapes may be calculated for the particular wing by any of the methods
given in references 36 and 37. However, since flutter speed is not highly
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sensitive to slight changes in mode shape, the mode shapes for a uniform
cantilever beam may be used if aspect ratio and taper ratio are not too
small. All calculations in the present report were made by using the
first torsion and first and second bending mode shapes for a uniform canti-
lever beam as given in table III and figure 37. (Equations governing har-
monic bending or torsional oscillations of a uniform cantilever beam are
derived in ref. 37.) Table III contains all combinations of these mode

shapes which are required for the calculation of integrals (:) to (jb.

Also presented in table III are the integrals of these mode-shape com-
binations which are useful in evaluating the integrals for untapered

wings.

Columns (13) and (14) of table II represent the distributions of
static aerodynamic parameters at a given Mach number.

Calculation of Static Aerodynamic Parameters Cj, n and acp
2

The values of local lift-curve slope CzCL n ore obtained for sec-
2
tions normal to the elastic axis by applying simple sweep theory to Cla

values for streamwise sections. Thus,

Cza
= (B6)

c -
Ya,n T Gog Acg

The use of simple sweep theory together with values of C3, for stream-

wise sections results in Cla,n values different from those obtained by

direct integration of pressures over sections normal to the elastic axis.
However, the resulting discrepancies are negligibly small except near the
wing root where deflection amplitudes are small. (See fig. 27(e).) The
use of simple sweep theory should thus cause negligible errors in the
values of the integrals (:) to (ZD . The local aerodynamic centers acp
in units of semichord b and measured perpendicular to the elastic axis
are found from
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- (1 + a)Ky|cos Aeg + &

I
o
o

acn

1

ac[KKl + Kg) + (Kl - Kg)%] - (1 + 8)Ky)cos Aeg + @ (BT)

Distributions of C3, , and acp for all the wings calculated are shown
b4

in figures 27 to 35. As indicated in figures 27(e) and (f) the values of
Ciq.n 8nd acp used in the flutter calculations do not always lie on the
’

curves of Cq_ and acp distribution. The integrals (:) to é{)
2

(appendix A) are evaluated numerically by using values of mass, elastic,
and aserodynamic parameters at n = 0.05 to 0.95, in increments of 0.10.
The required values of CzOL n and ac, therefore are average values

b

over the 7n-intervals O to 0.10, 0.10 to 0.20, . . . 0.90 to 1.00. These
values do not coincide with the Cla,n and acp distribution curves

near points of sharp change.

Subscnic free stream.- In the case of subsonic free-stream velocity,
the spanwise distribution of Cj3, 1s found by the method of reference k.

For these subsonic loading calculations, the full wing 1s considered.
That is, the reflection plane is considered to be at the fuselage center
line, and the presence of the fuselage is neglected. The effect of the
fuselage on the actual loading is felt primarily near the wing root.
Since deflection amplitudes are small near the root, the overall effect

of the fuselage on the integrals (1) to @7) should be negligible. Since

the loading distribution is computed for the full wing including fuselage
intercept and since the distribution only over the wing panel is required
in the flutter calculation, the full-wing distribution of Cj, 1s plotted,

and values are read off at stations corresponding to 17 = 0.05, 0.15,
. 0.95 of the wing panel. (see fig. 38.) For subsonic free-stream
velocity, acp = -0.5 is used throughout. This value corresponds to the

aerodynamic center at the quarter-chord of a section normal to the elastic
axis.

Supersonic free stream.- For supersonic free stream, the cases of
subsonic leading edge and supersonic leading edge are considered.
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(1) Subsonic leading edge: In the case of supersonic free-stream
velocity and subsonic leading edge, the spanwise distributions of Ci

and ac are found by the method of reference 25. For these calculations,
the wing 1s treated throughout as though the side of the fuselage is a
reflection plane. This assumption seems reasonable since in the linearized
theory of reference 25 the distribution of loading on the wing panel is
dominantly affected by Mach waves emanating from the wing-fuselage
Jjuncture.

When the leading edge is subsonic and the trailing edge 1is super-
sonic, as in sketch 1,

Side of fuselsge

Mach lines

Sketch 1

the expressions for streamwise Cla and ac take a very simple form

Erp + €
Cyy = Cig 1 = a =L (B8)
o @, E tan M5 \|E7E - E1F

b TN
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2 2 2
ac = C& - cm@:l = 1 Erp - 2brp + ————EI‘E log ‘e * Ve L (B9)
G, © 2(§ -8 ) ™ Le 2 2
a a,l TE ~ °LE ErE- - f1m LLE
32
where E = E 1 - ————} 1is the complete elliptic integral of the
tanArg

second kind. Expressions for ELE’ gTE, and tan Ajp are glven by

equations (B2), (B3), and (B5). The numerical subscripts throughout
refer to the loading areas in the appropriate sketch. Note that for
this condition ac is a function only of wing geometry and that Mach
number affects Cla only through the function E. Equations (B8)

and (B9) contain no provision for accounting for the loss of loading
within the Mach cone from the tip leading edge. The procedure for
applying tip corrections 1s discussed subsequently.

When the leading edge and trailing edge are both subsonic, as in
sketch 2,

Mach line

Side of fuselage

Mach lines—————;::;r

Sketch 2
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the loadings indicated by equations (B8) and (B9) must be corrected to

account for the loss of loading behind the root trailing-edge Mach line.
For this condition

Cy. =C + Ay

a a,l a,’
Cmg = Cmg 1 + &mg 5 (B10)
C
ac = Lna_
Cig,

T
3
-y f TE ’ 2
1 Flo,\[1 - —B=—|at
%3 " FK tan ALE(gTE - gLE) Ey tan2
S (B11)

m, = f T EFle, |1 2 at L o
= ] - = 1
'3 EK ten Agg (bre - gm)z EM tan? trp - bp

/

2
where K = K{\[1 - —B-—— is the complete elliptic integral of the
tan®Arg
2
first kind, Flo,\|/1 - — B is the incomplete elliptic Integral of
tan®Arg
the first kind, and
4 ,
EM = ——— + B (B12)
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r (B13)

Ap(1 + Ap)

J

Equations (Bll) represent only the "symmetric" trailing-edge correction
discussed in reference 25. However, this quantity is considered suf-
ficiently accurate for present purposes. The integrals in equations (Bl1)
are evaluated numerically.

For n stations near the wing tip the loadings given by equa-
tions (B8), (B9), or (BlO) must be corrected to account for the loss of
loading within the Mach cone from the tip leading edge. When the leading
edge is subsonic, as In sketch 3,

Side of fuselage
Mach lines

Sketch 3

waverilman
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these corrections are made as follows: First, the spanwise locations of
points P, S, and L (see sketch 3) are found from the equations

4

e P R
np = (Bl)+)
tan ATE + B
ns = np + (ErE - 5ea)n=np sin Aea COS fea (B15)
where
_ (v
(gTE ) gea)TFTIP - ('s')n=np(l ) a"="P)K2
and
i, =1 - (E.ea - ELE>,1=1 sin Aea c0s Aea (B16)
where

(Eea - gLE>11=1 = (§>n=1(l * a‘n=l)Kl

(See fig. 36.) The more inboard (measured parallel to the elastic axis)
of the points S and L represents the 17 station at which the tip
effect first begins to be felt.

The load intensity on the wing rises from trailing edge to leading
edge and approaches infinity at the leading edge. Therefore, if Ng < My s

the loss of loading caused by the tip will begin at the trailing edge
where load intensity is relatively low and gradually extend forward into
a region of high load intensity as the tip is approached. The loss of
loading outboard of ng will thus produce a curve of Cla,n as a func-

tion of 17 which has negative curvature as well as negative slope. (see
fig. 39(a).) Now the static aerodynamic loading parameters are intro-
duced into the flutter equations through strip theory which implies that
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the loading has a quasi-two-dimensional character. For a swept wing an
exact stripwise evaluation of loading near the tip would therefore have
questionable significance since neither the wing plan form nor the pres-
sure distribution is quasi-two-dimensional in that region. In view also
of the difficulty in performing an exact stripwise integration of loading
near the tip, a reasonable fairing of the Cla,n curve is considered

adequate, even though this fairing occurs at spanwise locations where
wing deflection is greatest. For the case of ng < 7y (fig. 39(a)),

the approximate curve used 1is geometrically derived from that obtained
by streamwise integration of loading in the tip region. The geometrical
derivation consists of applying a constant stretching factor to the curve
obtained by streamwise integration of the tip loading in order to fit
this curve to the known loading at n = ng. The appropriate equations

for this streamwise calculation are equations (6), (15), and (26b) of
reference 25. No reflections of Mach lines from plan-form edges are con-
sidered. For wing 445, flutter speed determined by using this type of
fairing and that obtained by using exact stripwise integration of tip
loading differed by only 0.6 percent.

If g = N1» the curve of Cla,n has a sharp discontinuity at

n=ng=n, (See fig. 39(b).) 1In this case an accurate representation

of the loading in the tip region can be obtained with the aid of figure 7
of reference 25. This figure gives the loss of 1ift across the tip Mach
line. A straight line is used, as in figure 39(b), to fair the CZQ n

2

curve to zero at np. The value of np 1is given by
np =1+ (g - Eea)ne1 510 Aeg COS Acg (B17)

If g > Mg, the region of high load intensity near the leading edge
is lost first, so that the curve of Cla,n against 1 has a steep nega-
tive slope just outboard of np but has also a positive curvature (as in
fig. 39(c)). 1In this case a straight line is used to fair the Clq,n curve
between 71, and n = 1. In no case 1s any loading outboard of n =1

used in the flutter calculation.

In general, no tip correction was applied to acp since such cor-

rections would occur in only a small region. For wing 430, however, the
point ng was so far inboard that it was considered necessary to apply

a tip correction to ac,. (See figs. 28(d) and (e).) This correction
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was obtained in the same manner as the correction for Cla 0 That is,
2

the correction was determined from streamwise integration of 1ift and
pitching moment from which ac and hence acp were found.

(2) Supersonic leading edge: when the leading edge 1s supersonic,
as in sketch L,

Side of fuselage

Mach lines

Sketch 4

the spanwise distributions of C;, and ac are found by the method of

reference 26. Again the wing is treated as though the side of the fuse-
lage is a reflection plane. Values of Cla n and acp are found from
2

Cla and ac by applying simple sweep theory as described previously.

The procedure for finding Cla and ac 1is as follows: First, find the

spanwise locations of points P, O, and Q (see sketch 4) by using the
equations:



20
t&IlALE-O-B— 4
o Ap(l+7\p
P tan Amp + B
tanALE+B
o g
b 1

nQ:AP(1+7\pja-tanATE

If point O 1lies on the wing, then for 0 S n £ ps

4 S Cp,1
Cig = Em, - Ep) *+ f ( ’ )dg
) \]BE - ta.nEALE(gTE - ELE) (Ml LE) fy °p, 20

and

4 1f, 2 2 Yre [cpa 4R
Cog, = How® - es®) + [ §<—’ )de .
)2{2( ) 3 ‘p, 2D brg - tp

B2 - tan®Arp (bte - tiE M

- b [l - "M (Cp,1 ' (Gp,3
Cig )L(ml tE) + j; . (Cp,2n>dg + j; . (Cp,2D>d{I

and
I 1 M, [o brg 3
Cng, = 2’%(&5412 - Emz) + f 2 g<&3_>dg + f = g(CpJ)dg -t LE iy
\’52 - taneALE(ETE t1k) L ty \P2D ty, P2 e~ fLe
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(B18)

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)
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For ng £ 1 £ Mg,

€ brg [C
Cyy = : >[(§M2 - tyg) + fg "1 (2;’:;>dg . LM:E <c§:;>dg} (B25)

and

) : 2w, 2 My (o2 bre |, fop,3 -
Cog. = \s2 - tan?nze (brg - gLE)2|:5(§M2 - §LE) + LMQ §<—-—,E>d§ + ngl §<Cp,20>d§:| ity e (B26)
For nQ <ns1,

4 Ere [Cp,2
Cqy = (§M2 ) gm) . f Cp, )dg (B27)
\152 - tan®Arg (E'TE - gLE) EMp  \°P,2D
and
v L- 2 2 STE C@ 2) .

) a2\ - tE/ f v L1 I ¢ (B28)

- B% - tanzALE(ETE - gm)2L2(M2 ) tMo  \CPs 2D trg - E1E O

where, as before,

—'qtanALE

2

> (B29)

N
ETE=A—(—7pl+7\p + 1 tan Apg




52 P NACA RM L5TL10

and
EMl = B
ﬁ (B30)
Ey, = tan Arp + B(1 - n)
/
Also,
\
c 2
Pl )L os-1fr 4 ll
Cp, 2D 62 - tan®Argpn®
Cp. o \
2,2 1o 1ol e - 1T ) (B31)
Cp,2D n £ - tan ALET])
Cp,3 \ (Cp,1 Cp,2
= + -1
Cp,2p/ \Cp,2D Cp,2D
J
where
R = 2 tanArg - 1
2
B
S = (R - 1)tan®ArR > (B32)
T = tan Mg + (25 + tan ALE)(l - 1)
J

If point O 1lies behind the trailing edge, then np > Qs and Clcx,
and Cp, are obtained as follows:

For 01 < M’ Cza and Cmby equations (B21) and (B22);
for g SN S ps
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Cq. = 4 (853)

a

CmCL— 4 X

= (B34)
Vﬁg - tan®Arg

(V] [

For np S S1, Cy, &nd Cmg are given by equations (B27) and (B28).

All of the integrals in the foregoing expressions for C3, and Cma

are evaluated numerically.
It should be noted that for the case of supersonic leading edge if
Mg < 7y, no separate tip correction 1s necessary. Approximately correct
values of Cla n and acp 1in the tip region (q > ns) are obtained by
2
applying simple sweep theory to the values of Cla and ac resulting

from equations (B23) to (B28). Loadings of this type are shown in
figures 28(e) and 34(d). If ng > np, then the Ciq. cCurve is faired

)
with a straight line between 7y, and 71 = 1. (See fig. 39(c).) In this
latter case, equations (B23) to (B28) need not be evaluated.

Circulation Functions

As mentioned in the body of this paper, the circulation functions F
and G, which appear 1n the determinant elements listed in appendix A, are
obtained from aerodynamic coefficients given in reference 27 for two-
dimensional airfoils oscillating in compressible flow. (Similar coeffi-
cients for supersonic speeds only are also given in ref. 38.) These coef-
ficients 1g, 1z, my, my are defined in reference 27 so that

P = -2bpv2(hLElz + ela) (B35)

and

My, = (2b)2pv2(hLEmz + Gma) (B36)



5k I NACA RM L57TL1O

in the notation of the present paper, where hyp is the value of trans-

lation deflection at the leading edge. Now another expression for 1lift
in the case of two-dimensional compressible flow may be obtained from

equation (6) by deleting the terms containing o and 7. Thus,

a,n

P = -npb®(v8 + h - bab) - C3 pvdC|ve + h + b + acy - alé| (B37)
b

where
\
_ 2n
la,n = 7;
y for M <1
1
acp = - =
¢ )
and
4
Cla,n = E
for M> 1
a.Cn=O

Expressions for the circulation functions in terms of the aerodynamic
coefficients of reference 29 may be obtained by equating expressions (B35)
and (B37). Equating the two expressions for P (egs. (B35) and (B37)),
using

0 = iwd
h = iwh
0 = -ufb
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for simple harmonic oscillation, and noting that

h 9
hp = — - +
1E = 35 - a(L + 8)

lead to

55

c
h ta,n h h '
Cla.,nFCB - Cla.,nc'ckm'[g + e<_a'L + acp - Q)J = nknr2<g - ae> + [; - 9(1 +a) g + 291(1‘

/

and

o
h 1 _ h n "
Clq, nfCknr . e<—-‘1-:2 + acp - a> + Cigy nGCO = -wkpr + [E -0(1 + a)] 1," + 2014

n

where

lg = la(M,knr) = o' + ilg"

1

[l
It

1 = 1z(M,knr) = 12" + 112"
Considering only the pitching oscillation, that is, putting h = O,

permits simplification to

C
1
Fc - knr et acp - alGg = - 1 [21(1' -(1L+a)1,' - :tknrea]
an la,n
and
Cq
a,n 1 " 1
kny 2~ + acp - & FC + Go = - |:2la - (1 + a)lz' - ﬂknr]
25 Cy

a,n
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or

c ¢
1 , , 1
[21a' -1+ a)lz] + knr< %8 4 ey - %)[2za’ -1+ a)lz'] - nknr2( %0, acn>

Fe = (B38)
Cq 2
2 "ta,n
Cla,n[l+km. (2,‘ + acp - a):|
and
215" - (1 + a)1," k Cl—al—“+ac all2lg' - (1 + a)1y,’ k; k3cﬁ£
a - z ‘nre11 n - a - a)ig -ﬂnr+xm-aa + acp - a
Ge = (B39)

(o 2
2f *a,n
clo.,n 1 + kpy n + acy - a

Analogous expressions for Fo and Geo could be obtalned by equating
expressions for pitching moment M, instead of 1lift P. It was indi-

cated previously in this report that use of the present method for pre-
dicting flutter characteristics should probably be restricted to cases
for which kp,, 1s moderately small. Therefore, the km.5 term in equa-

C
1
tion (B39) may be dropped. Furthermore, the factor —EEZE + acp - a

does not vary greatly with Mach number except in the immediate vicinity
of M= 1, and this vicinity 1s inaccessible to the present method.
Therefore, since this factor is always multiplied by kp,. or knrg,
only small error will be introduced into the circulation functions by

C
1
taking throughout ( 2:,n + acp - a) = %, which 1s the incompressible

flow value with a = O. The value a = O implies torsional oscillation
about the midchord. Equations (B38) and (B39) then reduce to

2
k
(210,,' - zz') + —-—gr(eza" - 12") - x knzr

CONFIDENTIAL
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@ g g
(2lq,l' - lz"> - T a,' - lz') - )Tknr
Ge = (B41)
2
knr
Cla,n 1+ (_5_

These expressions for Fc and Gg are independent of wing parameters

and depend only on Mach number M and reduced frequency Xpr. As men-
tioned in the body of this report, when the two-dimensional circulation
functions Fo and Gy are used in flutter calculations for three-

dimensional wings, the functions are defined by the Mach number normsal
to the leading edge. Thus Cg becomes

Co = CCQMLE,knr) - FC(MLE,knr> + iGC(MLE,knr)

A typical comparison of Fp and Gg calculated from equations (B4O)
and (B41l) with those obtained from equations (B38) and (B39) is shown in
figure 40. Values of F; and Gy were obtained from equations (B38)
and (B39) for two positions of aerodynamic center: acp = O (the two-
dimensional supersonic value) and acp = -0.325261 (the value at the

station 1 = 0.75 of wing 445 at M = 1.75). The results in both cases
closely approximate the results from equations (B4O) and (B4l). The dif-
ferences between the three sets of Fz and Gg curves shown in figure 4O

would result in less than 1 percent difference in the calculated flutter
speed for wing 4i45. Since calculated flutter speed is only moderately
sensitive to small changes in the circulation function values (see fig. 3),
the circulation functions used throughout this investigation were cal-
culated from the simplified equations (BLO) and (B4l).

Some typical curves of Fn and Gy are shown in figure 41, and
the combinations (21a' - lz'> and (2la" - lz") used in equations (B40)
and (B4l) are plotted in figures 42 and 43, respectively.
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- bound vortex {strength assocliated with cla n = 2u)
’

elastic axlis
point of application of

downwash boundary cond!tlon
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(a) Relations used in references 22 and 33.

.
> x

bound vortex (strength proportional to Cl )
a,n
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point of application of
downwash boundary condition

N
Y

\ —
-1 —— I +1
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le— &
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(b) Relations used in present method.

Figure 1l.- Geometric relations associated with the application of the
downwash boundary condition.
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2.

O Experiment

F
—{}—C = F_(I:(FI + 1G671)

2.2 —
O ¢ = V;CE + 0c?

+ 10

\/gI2 + GIZ

AN C=FC+10 /
2.0

1.7 - /O

/O(o
1.6

Figure 6.- Variation of flutter speed with Mach number for wing 245.
For calculated points p = 0.003900 slugs/cu ft.
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O Experiment F
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Figure 10.- Variation of flutter speed with Mach number for wing 400.
For calculated points p = 0.002378 slugs/cu ft.
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Figure 27.- Distributions of static aerodynamic parameters for wing LLi5.
Symbols indicate values of Cla,n used in the flutter calculations.
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Figure 3%9.- Continued.
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